
Processing large graphs in parallel

Contact: e.krepska@vu.nl

E. Krepska, T. Kielmann, W. Fokkink, H.Bal

VU University Amsterdam, Netherlands

Download/papers: http://www.cs.vu.nl/~ekr/HipG

HipG A framework to easily write
distributed graph algorithms

Automatic
parallelization
for a distributed
computer:

visit()

v

w

z
. . .

v

w
z

visit()

Vertices distributed
between memories
of many machines

visit()

visit()

. . .

Methods on
non-local vertices
translated into
asynchronous
messages

Termination
detection:

v.visit();
barrier();

Speedup of selected HipG applications run using 4-128 workers
(2 per machine) on the DAS-4/VU cluster, on graphs with
up to 10 of vertices and edges. On 64 machines obtained
efficiency of 60-80%.

User implements
graph vertices: public void visit() {

 if (!visited) {
 visited = true;
 while(hasNeighbor(i))
 neighbor(i++).visit();
 }
}

// custom data
boolean visited;

// custom methods
visit();

MyVertex

Gives work to
 other vertices

Visits all
reachable
vertices

This is
sequential
code!

Java

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

S
p
e
e
d
u
p

#Workers

Perfect speedup
Visitor

BFS/LN
SpinJadi-E

Results &
examples

More features:

Breadth-first
search (BFS)

Model
checking
(SpinJadi)

Global operations

Divide-and-conquer
graph computations

On-the-fly
computations
(concurrent with
graph generation)

10

Push-button automatic parallelization

Easy programming (exposed vertex/edge)

Handles billions of vertices and edges

Efficient w.r.t. memory and computation

Structure-driven fine-grained computations

We're looking for
new applications

Talk
to us!

Genetic
networks

